
A Online Appendix

A.1 Derivations

As Adrian et al. (2013), we assume that the systematic risk is represented by a stochastic
vector, (Xt)t≥0, that follows a stationary vector autoregression

Xt = μ+ ΦXt−1 + vt (A.1)

with initial condition X0 and whose residual terms, (vt)t≥0 follow a Gaussian distribution
with variance-covariance matrix, Σ, i.e,.

vt
∣∣ (Xs)0≤s≤t ∼ N (0,Σ) . (A.2)

Let’s denote the zero coupon treasury bond price with maturity n at time t by P
(n)
t . We

take the following assumptions:
Assumption 1. No-arbitrage condition holds (Dybvig and Ross, 1989), i.e.,

P
(n)
t = Et

[
Mt+1P

n−1
t+1

]
. (A.3)

Assumption 2. The pricing kernel, mt+1 := logMt+1, is exponentially affine

mt+1 = −r(1)t − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, (A.4)

where r
(1)
t := −p(1)t is the continuously compounded risk-free rate, and λt ∈ R

K .
Assumption 3. Market prices of risk are affine

λt = Σ−
1
2 (λ0 + λ1Xt) , (A.5)

where λ0 ∈ R
K and λ1 ∈ R

K×K .
Assumption 4.

(
xr

(n−1)
t , vt

)
t≥0

are jointly normally distributed for n ≥ 2.

Thanks to all these assumptions, we can continue our modeling by recalling the definition
of the excess holding return of a bond maturing in n periods, i.e.,

xr
(n−1)
t+1 := p

(n−1)
t+1 − p

(n)
t − r

(1)
t , (A.6)
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where n− 1 indicates the n− 1 periods remaining since time t+1 with respect to which the
return is computed. Now, (A.3) can be rewritten as

1 = Et

[
exp

{
mt+1 + p

(n−1)
t+1 − p

(1)
t

}]
= Et

[
exp

{
−r(1)t − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1 + xr
(n)
t+1 + r

(1)
t

}]
= Et

[
exp

{
xr

(n)
t+1 −

1

2
||λt||2 − λT

t Σ
− 1

2vt+1

}]
= exp

{
Et [ξt+1] +

1

2
V [ξt+1]

}
,

(A.7)

where ξt+1 := xr
(n)
t+1 − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, and

Et

[
ξ
(n−1)
t+1

]
= Et

[
xr

(n−1)
t+1

]
− 1

2
||λt||2 (A.8)

Vt

[
ξ
(n−1)
t+1

]
= Vt

[
xr

(n−1)
t+1 − λT

t Σ
− 1

2vt+1

]
= Vt

[
xr

(n−1)
t+1

]
+ Vt

[
λT

t Σ
− 1

2vt+1

]
− 2cov

(
xr

(n−1)
t+1 , λT

t Σ
− 1

2vt+1

)
= Vt

[
xr

(n−1)
t+1

]
+ λT

t Σ
− 1

2Vt [vt+1] Σ
− 1

2λt − 2λT

t Σ
− 1

2 covt

(
xr

(n−1)
t+1 , vt+1

)
= Vt

[
xr

(n−1)
t+1

]
+ ||λt||2 − 2λT

t Σ
1
2β

(n−1)
t . (A.9)

where
β
(n−1)
t := Σ−1covt

(
xr

(n−1)
t+1 , vt+1

)
∈ R

K . (A.10)

Therefore, no-arbitrage condition (A.3) is equivalent to

0 = Et

[
xr

(n−1
t+1

]
+

1

2
Vt

[
xr

(n)
t+1

]
− λT

t Σ
1
2β

(n−1)
t , (A.11)

which gives us the following expression for the expected returns:

Et

[
xr

(n−1)
t+1

]
= λT

t Σ
1
2β

(n−1)
t − 1

2
Vt

[
xr

(n)
t+1

]
. (A.12)

Assumption 5. β
(n)
t = β(n) for every t ≥ 0.

If we were to decompose the unexpected excess return, xr
(n−1)
t+1 −Et

[
xr

(n−1)
t+1

]
into a component

that is correlated with vt+1 and another component which is conditionally orthogonal, ε
(n−1)
t+1

(return pricing error), we could simply write the following OLS-wise form

xr
(n−1)
t+1 − Et

[
xr

(n−1)
t+1

]
= vT

t+1γ
(n−1) + ε

(n−1)
t+1 . (A.13)

A-2



and try to figure out who the γ(n−1) is. To do so, notice that

β
(n−1)
t = Σ−1

(
E

[
xr

(n−1)
t+1 vt+1

]
− E

[
xr

(n−1)
t+1

]
Et [vt+1]

)
= Σ−1E

[
xr

(n−1)
t+1 vt+1

]
and

γ(n−1) =
(
E
[
vT

t+1vt+1

])−1
E

[
vt+1xr

(n−1)
t+1

]
= Σ−1E

[
xr

(n−1)
t+1 vt+1

]
,

because E
[
vT
t+1vt+1

]
= Σ. Therefore, γ(n) = β(n) for every n ≥ 0. With this identity in our

hands,

V

[
xr

(n−1)
t+1

]
= Et

[(
xr

(n−1)
t+1 − Et

[
xr

(n−1)
t+1

])2
]

= Et

[(
vT

t+1β
(n−1) + εn−1t+1

)2]
= Et

[(
vT

t+1β
(n−1))2 + 2vT

t+1β
(n−1)ε(n−1)t+1 +

(
ε
(n−1)
t+1

)2
]

=
(
β(n−1))T

Et

[
vt+1v

T

t+1

]
β(n−1) + σ2

=
(
β(n−1))T

Σβ(n−1) + σ2,

Finally,

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1))T

Σβ(n−1) + σ2
)

+ vT

t+1β
(n−1) + ε

(n−1)
t+1 .

(A.14)

A.2 Estimation

We can then rewrite (A.14) as

xr
(n−1)
t+1 = (λ0 + λ1Xt)

T Bn−1 − 1

2

(
BT

n−1ΣBn−1 + σ2
)
+ vT

t+1Bn + e
(n−1)
t+1 (A.15)

and therefore have a vectorial form:

xr =
(
λ0�

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ2

�K×1
)
�

T

T +VTB+ E (A.16)

where
1. xr ∈ R

T×N .
2. λ0 ∈ R

K , λ1 ∈ R
K×K ,

3. X− = [X1 | X2 | · · · | XT−1]
T ∈ R

T×K ,
4. B ∈ R

K×N ,
5. B∗ = [vec (B1B

T
1 ) | · · · | vec (BnB

T
n)]

T ∈ R
K2×N ,

6. V ∈ R
T×K and E ∈ R

T×N .
So we take (A.16) as our reference point in the estimation process that we do in four stepsby
extending Adrian et al. (2013) procedure:

1. Construct the pricing factors (Xt)
T
t=1. First, model the trend in the one-period (three-

month) rate is captured by projecting it on the proxy for the age structure of the population,
potential output growth and the survey-based measure of long-run inflation expectations.
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Second, derive the cyclical components of yields at any maturity by considering the difference
between yields and the trend in the three-month rate. Third consider as price factors the
first k principal components of de-trended yields.

2. Model the pricing factors, (Xt)
T
t=1 via a VAR and estimate the VAR coefficients μ ∈ R

K

and Φ ∈ R
K in (A.1) using OLS. Then take (v̂t)

T
t=1 from v̂t := Xt − X̂t ∈ R

K , where

X̂t = μ + ΦXt−1 for every t = 1, . . . , T . Stack the time series (vt)
T
t=1 into the matrix

V̂ ∈ R
T×K . The variance-covariance matrix is thus

Σ̂ =
V̂

T

V̂

T
(A.17)

3. Perform the regression according to (A.16), i.e.,

xr = a�T×K�K×N + V̂b+X−c+ E (A.18)

where a ∈ R, b, c ∈ R
K×N . Collect everything into single matrices

Z =
[
�T×1 | V̂ | X−

]
∈ R

T×(2K+1) (A.19)

d = [a�K×1 | b | c]T ∈ R
(2K+1)×N (A.20)

so we can write xr = Zd+ E and therefore

d̂ = (ZTZ)−1 ZTxr. (A.21)

Then, collect the residuals from this regression into the matrix

Ê = xr− Zd̂ ∈ R
T×N . (A.22)

and estimate

σ̂2 =
tr

(
Ê

T

Ê
)

NT
. (A.23)

Finally, we construct B̂
∗
from b̂.

4. Estimate the price of risk parameters, λ0 and λ1 via cross-sectional regression. Recall
from (A.16) that

a =
(
λ0�

T

T×1
)T

B− 1

2

(
B∗vec (Σ) + σ2

�K×1
)
�

T

T (A.24)

c = λT

1B (A.25)

If we transpose them, we can estimate λ0 and λ1 via OLS, i.e.,

λ̂0 =
(
B̂B̂

T
)−1

B̂

[
âT +

1

2
�T×1

(
B∗vec (Σ) + σ2

�N×1
)T

]
(A.26)

λ̂1 =
(
B̂B̂

T
)−1

B̂ĉT (A.27)
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A.3 Recursion for the Term Structure

Consider the generating process for log excess returns in our model:

xr
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1))T

Σβ(n−1) + σ2
)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 . (A.28)

We need now to find two sequences of coefficients, (An)
N
n=1 and (Bn)

N
n=1, that allow us to

express bond prices as exponentially affine in the vector of state variables, Xt, plus a trend
term, p

∗,(n)
t , i.e.,

p
(n)
t = p

∗,(n)
t + An +XT

t Bn + e
(n)
t , (A.29)

where p
(n)
t := logP

(n)
t . Notice that

p
(1)
t = −r(1)t = −r∗,(1)t − δ0 −XT

t δ1, (A.30)

motivating that A1 = −δ0, B1 = −δ1, and p1,∗t = −r∗,(1)t . For any n > 1,

xr
(n−1)
t+1 = p

∗,(n−1)
t+1 + An−1 +XT

t+1Bn−1 + e
(n−1)
t+1

− p
∗,(n)
t − An −XT

t Bn − e
(n)
t

+ p
∗,(1)
t + A1 +XT

t B1 + e
(1)
t

= p
∗,(n−1)
t+1 + An−1 + (μ+ ΦXt + vt+1)

TBn−1 + e
(n−1)
t+1

− p
∗,(n)
t − An −XT

t Bn − e
(n)
t

+ p
∗,(1)
t + A1 +XT

t B1 + e
(1)
t (A.31)

= xr
∗,(n−1)
t+1 + (An−1 − An + A1 + μTBn−1)

+XT

t (ΦTBn−1 − Bn +B1) +
(
en−1t+1 − e

(n)
t + e

(1)
t

)
+ vT

t+1Bn−1.

Hence, the following must hold

xr
∗,(n−1)
t+1 + (An−1 − An + A1 + μTBn−1)

+XT

t (ΦTBn−1 − Bn +B1) +
(
en−1t+1 − e

(n)
t + e

(1)
t

)
=(λ0 + λ1)X

T

t β
(n−1) − 1

2

((
β(n−1))T

Σβ(n−1) + σ2
)
+ vt+1β

(n−1) + ε
(n−1)
t+1

i.e.,

An−1 − An + A1 + μTBn−1 = λT

0β
(n−1) − 1

2

((
β(n−1))T

Σβ(n−1) + σ2
)

ΦTBn−1 − Bn +B1 = λT

1β
(n−1)

un−1
t+1 − u

(n)
t + u

(1)
t + vT

t+1Bn−1 = ε
(n−1)
t+1

xr
∗,(n−1)
t+1 = 0

vT

t+1β
(n−1) = vT

t+1Bn−1
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and therefore

An = An−1 + μTBn−1 − λT

0β
(n−1) +

1

2

((
β(n−1))T

Σβ(n−1) + σ2
)
+ A1

Bn = ΦTBn−1 +B1 − λT

1β
(n−1)

p
∗,(n)
t = p

∗,(n−1)
t+1 − r

∗,(1)
t

β(n) = Bn

The last equation simplifies everything even more:

An = An−1 + (μ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)− δ0 (A.32)

Bn = (Φ− λ1)
T Bn−1 − δ1 (A.33)

p
(n),∗
t = p

(n−1),∗
t+1 − r

∗,(1)
t (A.34)

Equation (A.34) for the price stochastic trend implies that

r
∗,(n)
t =

1

n

n−1∑
i=0

r
∗,(1)
t+i . (A.35)

On the other hand, these equations are fully deterministic, meaning that one can iterate all
the equations back to get expressions that depend only on the initial values, A1 and B1.
First,

Bn = (Φ− λ1)
T
(
(Φ− λ1)

T Bn−2 − δ1
)− δ1

= · · ·

=
[
(Φ− λ1)

T
]n−1

B1 −
n−2∑
j=1

[
(Φ− λ1)

T
]j
δ1.

= −
n−1∑
j=1

[
(Φ− λ1)

T
]j
δ1

(A.36)

Second,

An = An−2 + (μ− λ0)
T (Bn−1 +Bn−2) +

1

2

(
BT

n−1ΣBn−1 +BT

n−2ΣBn−2
)
+ 2

(
1

2
σ2 − δ0

)
= An−2 + (μ− λ0)

T (Bn−1 +Bn−2)

+
1

2

(
[Bn−1 +Bn−2]

T Σ [Bn−1 +Bn−2]
)
+ 2

(
1

2
σ2 − δ0

)
= A1 + (Φ− λ1)

T

n−1∑
j=1

Bn−j +
1

2

(
n−1∑
j=1

Bn−j

)T

Σ

(
n−1∑
j=1

Bn−j

)
+ (n− 1)

(
1

2
σ2 − δ0

)
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It’s not difficult to see that

n−1∑
j=1

Bn−j =
n−1∑
j=1

n−j∑
k=1

[
(Φ− λ1)

T
]j
δ1 =

n−1∑
j=1

(n− j)
[
(Φ− λ1)

T
]j
δ1. (A.37)

That allows us to write

An = (Φ− λ1)
T

n−1∑
j=1

(n− j)
[
(Φ− λ1)

T
]j

+
1

2

(
n−1∑
j=1

(n− j) (Φ− λ1)
j

)
Σ

(
n−1∑
j=1

(n− j)
[
(Φ− λ1)

T
]j)

+ n

(
1

2
σ2 − δ0

)
.

(A.38)

A.4 Recursion for Term Premia

Remember that

TP
(n)
t = u

(n)
t − 1

n

n∑
i=1

Et

[
u
(1)
t+i

]
, (A.39)

where u
(n)
t = r

(n)
t − r

∗,(n)
t . The affine model implies that

u
(n)
t = −n

(
An +XT

t Bn + e
(n)
t

)
. (A.40)

In particular, for n = 1,
u
(1)
t = −A1 −XT

t B1 − e
(1)
t . (A.41)

Hence,

Et

[
u
(1)
t+i

]
= −A1 − Et

[
XT

t+i

]
B1. (A.42)

Now, since Xt+i = μ+ ΦXt+i−1 + vt+i, then, we can iterate backwards to get

Xt+i = μ+ ΦXt+i−1 + vt+i

= μ+ Φ (μ+ ΦXt+i−2 + vt+i−1) + vt+i

= (1 + Φ)μ+ Φ2Xt+i−2 + Φvt+i−1 + vt+i

= · · ·

=

(
i−1∑
j=0

Φj

)
μ+ ΦiXt +

i−1∑
j=0

Φjvt+i−j.

(A.43)

Since Et [vs] = 0 for every s > t, then

Et [Xt+i] = Φ̃iμ+ ΦiXt, (A.44)
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where

Φ̃i =

(
i−1∑
j=0

Φj

)
. (A.45)

Hence,
1

n

n∑
i=1

Et

[
u
(1)
t

]
= −A1 − 1

n

n∑
i=1

(
Φ̃iμ+ ΦiXt

)T

B1

= −A1 − 1

n
BT

1

(
n∑

i=1

Φ̃i

)
μ− 1

n
BT

1

(
n∑

i=1

Φi

)
Xt

= −A1 − 1

n
BT

1

(
n∑

i=1

Φ̃i

)
μ− 1

n
BT

1 Φ̃nXt

= Ξn +ΨnXt

(A.46)

where

Ξn = − 1

n
A1 − 1

n
BT

1

(
n∑

i=1

Φ̃i

)
μ (A.47)

Ψn = − 1

n
BT

1 Φ̃i (A.48)

Hence,
TP

(n)
t = u

(n)
t + Ξn +ΨnXt (A.49)
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