A Online Appendix

A.1 Derivations

As Adrian et al. (2013), we assume that the systematic risk is represented by a stochastic
vector, (Xt),, that follows a stationary vector autoregression

Xt = H + ®Xt—1 + vt (Al)

with initial condition X, and whose residual terms, (v;),-, follow a Gaussian distribution
with variance-covariance matrix, >, i.e,.

Ut} <X5)0§s§t ~N(0,%). (A.2)

Let’s denote the zero coupon treasury bond price with maturity n at time ¢ by Pt("). We
take the following assumptions:
Assumption 1. No-arbitrage condition holds (Dybvig and Ross, 1989), i.e.,

P =K, [My PR (A.3)

Assumption 2. The pricing kernel, m;; = log M, 1, is exponentially affine
1 _1
M1 = —T’t(l) - §H/\t|’2 — AT v, (A4)

where rt(l) = —pgl) is the continuously compounded risk-free rate, and )\, € R¥.

Assumption 3. Market prices of risk are affine
A=372 (Ao+ M X)), (A.5)

where \g € RX and \; € REXK,
Assumption 4. (xr,gn_l), vt> are jointly normally distributed for n > 2.
>0
Thanks to all these assumptions, we can continue our modeling by recalling the definition
of the excess holding return of a bond maturing in n periods, i.e.,

eriy =l = =, (A-6)
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where n — 1 indicates the n — 1 periods remaining since time ¢ + 1 with respect to which the
return is computed. Now, (A.3) can be rewritten as

1 =E; |[exp {mt+1 +P§ifl) - Pt(l)H

_ 1 n
— B o { —rf = NP = N2 b + o) + 0}

' m L2y (A7)
= E; |exp {$Tt+1 - éH)‘tH - A% 2Ut+1}
_ 1
= exp { E¢ [§1] + §V (€41 s
where &1 = mrt(i)l — I\ > = ATS 20,4, and
n—1 [ n—1 1
B [6577] = e ari ] = 1M (A8)
\Z [ EZID} =V W’fgi;l) - ASE_%%H]
=V, Wﬁﬁl)} + Vi [)\tTZ_%UtH} — 2cov (Wﬁﬁl), )‘tTZ_%Ut+1)
~v, 'xrt‘i;”} AT TEY, [u] £7EA — 207 Fcov, <xr§1;”, vt+1>
=V, [ar{ V] AP = A g, (A.9)
where
(=1 .~ $-1cov, ($T§i;l),vt+1> € R, (A.10)
Therefore, no-arbitrage condition (A.3) is equivalent to
n— ]‘ n = n—
0=E [mr,gﬂ 1} + §Vt [$T§+)1} - )‘théﬁt( 1)7 (A.11)
which gives us the following expression for the expected returns:
n— n— 1 n
Et |:.Z'7”§+1 1):| = )\tTE%Bt( 1 — §Vt |:.Z”r'§+)1:| . (A].2>

Assumption 5. ﬂt(n) = ™ for every t > 0.
If we were to decompose the unexpected excess return, xrt(_ﬁl) —E,; [xr,g_ﬁl)} into a component

that is correlated with v,,; and another component which is conditionally orthogonal, 5&;1)

(return pricing error), we could simply write the following OLS-wise form

n— n— n— n—1
337}(+11) — E, [xrzg+11):| = UtT+17( Y4 5§+1 ). (A.13)
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and try to figure out who the v~ is. To do so, notice that

Bl =yt (E [mrﬁﬁl)vm] -k |:x7"§+1 )} Ey [Utﬂ]) =Z7E [thH )UHI]

and

y ) = (E [UtT+1Ut+1D E |:Ut+1$T§ZIl):| =Y7'E [557%(2;1)%%1} )

because E [U;+1Ut+1] = ¥. Therefore, v = 5 for every n > 0. With this identity in our

hands, )
2
A\ [xr§11 1)] =E, (:m“xl_zl) —E, [Jm“gil )D ]
L . ,
= [, (Ut+15( Y+ t+1) ]
r 2
= E, (U;fﬂﬁ(n_l)) + 2v, /B(n 1)5151 s <575111)> }
— (/B(n_l))TEt |:Ut+1’l)g+1j| /B(n—l) +O_2
— (ﬁ(nfl))T Zﬁ(nfl) + 02’
Finally,

n n— 1 n— n—
xrngrll) (Ao + XX, B0 — 2 <(5( 1))T np T + 02)
+ i B + e (n v,

A.2 Estimation
We can then rewrite (A.14) as

1 o
~ (B 2B, 1+ 0%) + 0} By + el

1’7"15111) (Ao + A Xt) n17 5

and therefore have a vectorial form:
_ T T\7T 1 * 2 T T
Xr = ()\U]ITXI_*—)\le) B—§(B VeC(Z)+O' ]lel) ]lT+V B+E

where
1. xr € RT*N,

2. N € ]RK, A € RKXK,

3. X_ = [Xl ‘ Xy ’ <o ’ XT_l]T S RTXK,

4. B € REXN,

5. B* = [vec (ByBY) |---| vec (B,BY)|" € RE**N,

6. Ve R™K gnd E € RT*N,

(A.14)

(A.15)

(A.16)

So we take (A.16) as our reference point in the estimation process that we do in four stepsby

extending Adrian et al. (2013) procedure:

1. Construct the pricing factors (Xt)tT:y First, model the trend in the one-period (three-
month) rate is captured by projecting it on the proxy for the age structure of the population,
potential output growth and the survey-based measure of long-run inflation expectations.
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Second, derive the cyclical components of yields at any maturity by considering the difference
between yields and the trend in the three-month rate. Third consider as price factors the
first k principal components of de-trended yields.

2. Model the pricing factors, (Xt)thl via a VAR and estimate the VAR coefficients y € R¥
and ® € RX in (A.1) using OLS. Then take (3,),_, from 9, = X, — X, € R¥, where
X, = p+ ®X,_; for every t = 1,...,T. Stack the time series (Ut)thl into the matrix
V € RT*K_ The variance-covariance matrix is thus

AT
A A%
Y= T (A.17)

3. Perform the regression according to (A.16), i.e.,
xr = alpalgny + Vo+ X c+ E (A.18)
where a € R, b,c € REXN_ Collect everything into single matrices
7 — [nm V| X_} e RTX(2K+1) (A.19)
d=lalgxi | b]c" € REETIN (A.20)
so we can write xr = Zd + E and therefore
d=(Z"Z)"" Z xr. (A.21)

Then, collect the residuals from this regression into the matrix

E = xr — Zd e R"*V. (A.22)
and estimate o
o (E E)
52— N/ A2
o NT (A.23)

Finally, we construct B" from b.
4. Estimate the price of risk parameters, \y and \; via cross-sectional regression. Recall
from (A.16) that

1
a=(M1ry) B - 3 (B*vec (L) + 0”1 x1) 17 (A.24)
c=\'B (A.25)

If we transpose them, we can estimate \g and A\; via OLS, i.e.,

“ o - 1
Ao = (BBT) B [&T + §1TX1 (B*Vec (2) + 02]1NX1)T (A.26)

A = (BBT)_l Ber (A.27)



A.3 Recursion for the Term Structure

Consider the generating process for log excess returns in our model:

erfin = Qo+ M XA = 2 (B0D)T 80D 4 07) a0 4 eV (A28)

We need now to find two sequences of coefficients, (An)f:]:l and (Bn>7]:[:17 that allow us to

express bond prices as exponentially affine in the vector of state variables, X;, plus a trend
term, pi'", ie.,
o = pr™ b A+ X B, el (A.29)

where p = log P( ™). Notice that
p,gl) = —rﬁl) = —r:’(l) — 0o — X, 61, (A.30)

motivating that A, = —dy, B; = —d1, and ptl’* = —r:’(l). For any n > 1,

Wt(-ﬁl) = pt-i—(? Y + A1+ Xt+1Bn 1+ eiil Y

" — A, — XIB, — e
(1) + Al + XTBl + 6(1)
t-‘f? Vb A+ + (u+ Xy +vi1) Bug + 6&11)
—pp™ — A, = X]B, — "
7Y+ A+ XTBy + e (A.31)
— LIZ‘TH_(? 1) + (An,1 — An +4 Al —|— /LTanl)
+ X/ (®"B,_1 — B, + B1) + <ef+11 e + ei”) + v Baq.
Hence, the following must hold
xrtjr(? Y4 (A1 — A+ AL+ " Byq)
+X; (®"Bo1 — Ba + Bi) + (eyﬂl el + e§1)>
1 n—
=(Xo + M) X7 — B ((ﬁ("_l))T 2pl 02) + o SOD 4 el
ie.,
1
Apy = Ay + Ap+ (" By = X501 — B <(5(n71))T 2" + 02>
®'B,_; — B, + By = \'p»V
n— n 1 n—1
ut+11 - UE : ( '+ Upy1Bn1 = 51E+1 :
xrtJr(l V=0

(n—1) _ T
Ut+15 = V1 Bnoa
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and therefore

Aw= Au i B = N0 4 2 (8070)T 250D 4 02) 1 Ay

B, =®"B,_, + B, — \'p»~V
*,(n *,(n—1 *,(1
t():thr(l )_rt()

ﬁ(n) — B

The last equation simplifies everything even more:

1
An = An—l + (/,L — )\0)T Bn—l + 5 (Bz_lan—l + 0'2) - 60 (A32>
By =(®—\)"Bp_1— 0 (A.33)
" =i - (A.34)

Equation (A.34) for the price stochastic trend implies that

n—1

*,(n ]- * 1

=0

On the other hand, these equations are fully deterministic, meaning that one can iterate all
the equations back to get expressions that depend only on the initial values, A; and Bj.
First,

B,=(®—=X)" ((2— )" Bya—61) —

= [(® - Alﬂ”’l By — Z_: (D — Al)T]j o1 (A.36)
=— Z (@ — X)) 6

Second,

1 1
Ap=An o+ (11— 20)" (Bp_1 + Bas) + 3 (By_\XB,_1+ By _,XB,_5) +2 (502 _ 50)

=A,o+ (= Xo)" (Bno1+ Bn_s)

+ % ([Bu-t1 + Bys|" S [Bn_1 + By_s]) + ( )
= A+ (2 —\) niBn it <ZBn ])T (n 1 B, ]> (n—1) (%(;2—5())
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It’s not difficult to see that

ZBn—j = [(@ =A™ 6y :Z(”—j) [(@ = X)) 61,

That allows us to write

Ay =(@=2)"S (=) [(®—\)'T

+3 <Z<” —I)(e- W) 2 (Zm ~ )@~ W]j)

+n (%0’2 — 50) .

A.4 Recursion for Term Premia
Remember that

n n 1 & 1
TPt( ) :Ug )_E;Et [uliﬁz],

(1) p0) _ )

where u, ' =1, — . The affine model implies that

uM = —n (An + X;'B, + e§")> .

In particular, for n =1,
u) = —A, — X/'B;, — eV,
Hence,
oW _ T

]Et |:ut+i:| = —Al — ]Et |:Xt+ij| Bl-

Now, since X;; = p+ ®X;y; 1 + vy, then, we can iterate backwards to get
Xipi = p+PXppi1 + iy

=p+ @ (4 PXipio + Vipic1) + Uiy
=1+ ®)p+ P X0+ Pvpgiog + vy

i—1 i—1
_ (Z qﬂ) p+ DX, + Z 2

j=0 7=0

Since E; [vs] = 0 for every s > t, then

By [Xi4i) = @i+ X,
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(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)



where

P, = (Zl qﬂ) . (A.45)

7=0
Hence,
let [US)] _ A lz (‘T)WﬂL@iXt)TBl
[ L
— A - g ii’m - g iqﬂ' X,
no — ! no ' — (A.46)
1 "
= —A, — —Bf (Z cpi) - —Bld, X,
=1
where
=, =l lp zn:ci (A.47)
Hn—nlnliﬂzu :
1 ~
U, = —— Bl d, (A.48)
n
Hence,
TP™ = 4™ + =, + ¥, X, (A.49)
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