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Abstract

This paper proposes an Affine Macro Term Structure model in which yields

are drifting, sharing a common stochastic trend driven by the drift in short-term

(monetary policy) rates and excess returns are stationary as the compensation

for risk is driven by the cycles in yields. We apply the approach to US data and

compare the empirical results from the new specification with those obtained

from standard Affine Term Structure models. The cycle-trend decomposition-

based Affine Term Structure model produces much better forecasts of the dy-

namics of yields and, consequently, different and stationary dynamics for the

term premia.
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1 Introduction

This paper proposes a new Affine Macro Term Structure model in which yields are

drifting, sharing a common stochastic trend driven by the drift in short-term (mon-

etary policy) rates and excess returns are stationary as the compensation for risk

depends on the cycle in yields. This approach is strongly motivated by the data and

addresses a gap in the existing literature that adopts a common factor structure for

yields and excess returns.

1.1 A First Look at the Data

The quarterly US data from the last fourty years on the term structure of Gov-

ernment bonds show the presence of a common drift in yields to maturity which

disappears when 1-period excess holding returns for bonds at all maturities are con-

sidered. Figure 1 reports the quarterly time-series observations on the Treasury yield

curve estimates of the Federal Reserve Board made available by Gürkaynak et al.

(2007) over the period 1980-2023. Yields at maturities from 1 year to 15 year show

the presence of a common drift shared with that of interest rates on 1-period bond

(the three-month rate). Figure 2 reports the observed 1-quarter returns of holding

bonds at all maturities from 5 to 15 years in excess over the return on three-month

Treasury Bills. No trend is evident from the data. The stationarity of one-period

excess holding returns has two immediate implications. First, term premia at all ma-

turities, being average of expected one-period excess holding returns over the residual

maturity of bonds, are also stationary. Second, the common drift component in the

term structure is driven by the trend in the one-period bonds and it is removed when
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Figure 1. Quarterly observations on the time-series of (an-
nualised) yields from the 3-month to the 15-year maturity.
We use the same colour palette for all maturities (blue).
Darkest blue indicates the highest maturity, i.e., 15 years.

spreads of bonds at all maturities on the one period bond are considered.1

1One period excess holding returns for a bond with maturity of n periods at time t are defined

as rx
(n−1)
t+1 = R

(n)
t − rt − (n− 1)

[
R

(n−1)
t+1 −R

(n)
t

]
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Figure 2. Quarterly observations on the time series of 1-
quarter holding period returns for bonds at maturities be-
tween 5 and 15 years in excess of the return on three-month
Treasury Bills

1.2 The Literature

Macro-finance models of the term structure mostly belong to the class of Affine Term

Structure Models (Diebold et al., 2005). These models are originally designed for

stationary processes in yields, as the yield dynamics is modelled as a vector autore-

gression (VAR) of a set of factors extracted from the term structure partially, like Ang

and Piazzesi (2003), or totally, like Kim and Wright (2005) and Adrian et al. (2015);

and VAR models are used for forecasting stationary processes. Importantly, The fac-

tor dynamics also drives the price of risk and holding period returns. The presence

of a stochastic trend in yields has several negative consequences for this approach, in

view of the stationary nature of excess returns of buy-and-hold strategies. VAR mod-
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els are inappropriate for long-run forecasting of non-stationary data, biased forecast

of the dynamics of short-term rates2 do affect the measurement of term premia. The

non-stationarity of factors might results in non-stationarity of term premia, which is

counterfactual with respect to the empirical evidence of stationarity of holding period

(excess) returns.

Several papers have documented the existence of a slow-moving component com-

mon to the entire term structure (see, for example, Bakshi and Chen, 1994 and Fama,

2006). An important and growing literature has modeled Treasury yields using shift-

ing endpoints (Kozicki and Tinsley, 2001), near-cointegration (Jardet et al., 2013)

or long memory (Golinski and Zaffaroni, 2016), vector autoregressive models (VAR)

with common trends (Negro et al., 2017), slow-moving averages of inflation (Cieslak

and Povala, 2015) and consumption (Jørgensen, 2018), or an (unobserved) stochastic

trend common across Treasury yields (Bauer and Rudebusch, 2020). Interestingly,

(Bauer and Rudebusch, 2020), in their model that allows for a trend in yields and

returns, note that the loading of returns on the unobserved common stochastic trend

is an order of magnitude smaller than the loading of prices and they also report that

predictive regressions of returns on de-trended yields and trend proxies lead to co-

efficients on the trend that are not significantly different from zero. Campbell and

Shiller (1987) have proposed a stationary representation of spreads and changes in

short-term rates, based on cointegration between short-term rates and yields at any

maturity, but their approach has never found its way in Affine Term Structure models.

Piazzesi et al. (2015) use survey data on interest rate forecasts to construct subjective

bond risk premia to find that subjective premia are less volatile and not very cyclical.

2It has also been recognised that OLS estimates of near-unit roots are notoriously biased down-
ward, thus overestimating the amount of mean reversion in yields.
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They explain this evidence by pointing out that survey forecasts of interest rates are

made as if both the level and the slope of the yield curve are more persistent than

under common statistical models. Zhao (2020) proposes a structural model of trends

and cycles in the term structure capable of explaining several features of the data,

without relating the trend component of the yield curve to observable slow-moving

variables, such as the demographic structure of the population, whose properties can

be exploited for forecasting purposes.

1.3 Our Contribution

The objective of our contribution is to build an Affine No Arbitrage Term Structure

model consistent with the evidence from the data that yields are non-stationary and

driven by a common trend and excess returns are stationary. Following Favero et al.

(2022) and Favero and Fernandez-Fuertes (2023), we decompose short term rates in a

trend component and a cycle component. The trend component is driven by the very

long-run forecast of the central bank for real short term rates and by its response to

the very long-run forecast for inflation. The very long-run forecast for the real rates

is labelled in the literature as the natural rate of interest. We model the natural

rate as function of the equilibrium growth rate of output in the economy and the age

structure of population, a time-varying determinant of household preferences. Given

availability of long-run forecast for the growth rate of the economy, the age structure

of population, and long-term expected inflation, we measure the trend component

of the short term rate and its expectations and construct the current and future

trend component of the short-term rates. Trends for yields at any maturity are

then identified by taking the appropriate average of the future trends in the short
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rates over the duration of each bonds. Finally, factors are extracted from the cyclical

components of bonds at all maturities. A stationary VAR for the cyclical components

of yields is then estimated. Excess returns and term premia are driven by these

stationary variables. Prediction for short-term rates at any future dates are then

derived by combining the predictions for the trends (not based on the VAR for factors)

and the predictions for the cyclical components (based on the VAR for factors). Then

bonds at any maturities are priced via pricing equations that imposes no-arbitrage

restrictions. Term premia are derived as the difference of bond yields obtained when

the price of risk is estimated in the affine specification and when the price of risk

is restricted to zero. Bond yields are non-stationary, but their trend is the average

trend of short-term rates over the maturities of the bond and term-premia are driven

by the stationary state variables.

Our new specification has implications for forecasting and measurement of the risk

premia. We show that our approach has better forecasting performance and leads to

a measurement of term premia very different from that of standard models that

do not address the relevant features of the data. These differences are particularly

relevant when fluctuations in the risk premia are used to evaluate the macroeconomic

implications of monetary policy. (Schnabel, 2022)

2 An Affine Term Structure model with Trend

and Cycle in Monetary Policy Rates

Affine models of the term structure of interest rates are a popular way of determining

the term premia. The expectation of the future path of short rates can be extracted
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from these term structure models. The affine models typically use state variables

(latent factors) to model the shocks that drive the economy. The key assumptions

are: First, the pricing kernel is exponentially affine in the state variables, whose

dynamics is described by a VAR. Second, market prices of risk are affine in the state

variables. Finally, the innovations to state variables and one-period holding excess

returns are jointly normal-distributed.

Using these assumptions together with no-arbitrage restrictions delivers gener-

ating processes for continuously compounded excess returns and continuously com-

pounded yields at any maturity that are a function of the state variables. Yields can

be decomposed into a term premium, a convexity correction, and a part reflecting

expectations for the one-period rate over the residual life of the bond. In the light

of the evidence reported in the introduction, this specification strategy suffers from

a clear shortcoming: the state variables have to capture the drift in the data, and a

VAR model is not the most appropriate specification for long-run projections of the

relevant variables. Indeed, long-run projections are needed because pricing a long-

dated bond with quarterly data will require to project of the three-month rates over

an horizon equal to the maturity of the bond.

To deal with this problem, we propose to specify an Affine Term Structure model

with two sets of states variables: the trending ones and the stationary ones. The

trending variables will be related to slow moving components in the structure of the

economy and will not be predicted by a VAR, the VAR specification will then be

limited to the stationary state variables.
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2.1 Detrending the Term Structure to model excess returns

The identification of the two sets of state variables is implemented starting from the

specification of the one-period nominal risk free rate r
(1)
t . The risk free rate can be

decomposed in a trend and a cyclee. The trend, i.e. long-run risk free rate, is made

of two components: the natural rate of interest, r∗t , and a component that reflects

long-term inflation expectations.

Laubach and Williams (2003) show that in the standard Ramsey model households

intertemporal optimization delivers a positive relationship between the natural rate of

interest and both the growth rate of output in the economy and household preferences.

This motivates the inclusion of (log) growth rate of potential output, ∆ypott , as a

variable explaining the trend. However, Jordà and Taylor (2019) and Mian et al.

(2021) illustrate that fluctuations in output growth (per capita) of the economy cannot

fully explain the drift in natural rate, therefore, other time-varying determinants of

the rate of time preference of the agents in the economy should be considered. On the

one hand, we follow Favero et al. (2016), Lunsford and West (2019), and Favero et al.

(2022), and consider the age structure of the population as the driver of changing

preferences, in particular MYt, the ratio of middle-aged (40-49) to young (20-29)

population. On the other hand, Gürkaynak et al. (2005) convincingly argue that

private agents views of long-run infations are subject to fluctuations. In line with

this evidence we use the survey-based measure of long-run inflation expectations,

πLR
t , also considered in the Fed’s FRB/US model3 as the proxy for long-run inflation

expectations. This is a reasonable proxy under the assumption that the central bank

is credible. The cyclical part of the yield can be thus identified with the residual after

3Available at https://www.federalreserve.gov/econres/us-models-package.htm.
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regressing the short rate on those three variables, ∆ypott , MYt, and πLR
t .

Once the trend and the cycle in the one-period rate are identified, the trend and

the cycle for yields at all maturities can be constructed by taking the appropriate

average of the expected trends in the one-period rate:

r
(1)
t = r

∗,(1)
t + u

(1)
t (1)

r
∗,(1)
t = γ1MYt + γ2∆ypott + γ3π

LR
t (2)

r
(n)
t = r

∗,(n)
t + u

(n)
t (3)

r
∗,(n)
t =

1

n

n−1∑
i=0

r
∗,(1)
t+i (4)

The model is naturally interpreted within a cointegration approach (Engle and Granger,

1987) to model the stochastic drift in rates: if demographics, productivity and the

inflation target of the central bank successfully capture the trend in nominal rates,

then u
(1)
t should be stationary. Stationarity of u

(1)
t , paired with stationarity of the

term premia, implies that u
(n)
t are stationary. Note also that, in this framework

the stochastic trends in yields at all maturities are all driven by the trend in one

period rates.

Long-run forecast forMYt+i, ∆ypott+1, π
LR
t+i are readily available in that demographics

and potential output long-term forecast can be respectively downloaded from the

Bureau of Census and the Fred database, while credibility of the central bank implies

that long forecast for inflation cannot diverge from the CB target. Therefore, no

VAR is needed to obtain R
(1),∗
t+i , as these forecasts can be derived directly by using (1)

with the appropriate scenario for the exogenous variables MYt+i, ∆ypott+1, π
LR
t+i. After

this, K factors can now be extracted by obtaining the principal components to the
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N cyclical components of the yield curve u
(j)
t , for j = 1, . . . , n, which we stack into a

T ×N matrix, U. We denote these K factors as Xt ∈ RK , and they are the first K

principal components of U. This procedure ensures the stationarity of Xt to specoify

a VAR, i.e.,

Xt+1 = µ+ ΦXt + vt+1 (5)

vt+1| (Xs)
t
s=0 ∼ N (0,Σ), (6)

where µ ∈ RK , Φ ∈ RK×K and Σ ∈ RK×K . On the other hand, the variables in Xt

determine the market price of risk, λt, in the following affine form:

λt = Σ−1/2(λ0 + λ1Xt), (7)

The assumption of no-arbitrage implies that there exists a pricing kernel,Mt, such that:

P
(n)
t = Et

(
Mt+1P

(n−1)
t+1

)
, (8)

for every n > 0 and t ≥ 0, and where P
(n)
t = exp

[
−nr

(n)
t

]
is the price of a zero

coupon bond with maturity n. We are strictly following Adrian et al. (2015). Hence

we assume that the pricing kernel is exponentially affine, i.e.,

mt+1 = −r
(1)
t − 1

2
λT

t λt − λT

t Σ
−1/2vt+1, (9)

where r1t = − log(P
(1)
t ) = −p

(1)
t is the continuously compounded risk-free rate, and
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mt = logMt. The excess log returns are given by:

rx
(n−1)
t+1 = p

(n−1)
t+1 − p

(n)
t − rt, , (10)

where p
(n)
t = logP

(n)
t . After some derivations using (9) and (8) (see Appendix A.1),

we arrive to

Et

(
rx

(n−1)
t+1

)
= covt

[
rx

(n−1)
t+1 , v′t+1Σ

−1/2λt

]
− 1

2
Vt

(
rx

(n−1)
t+1

)
, (11)

In the same fashion as Adrian et al. (2013), we can define β
(n−1)′

t as

β
(n−1)
t := Σ−1covt

(
rx

(n−1)
t+1 , vt+1

)
∈ RK . (12)

By substituting from (12) into (11) and using (7), we have:

Et

[
rx

(n−1
t+1

]
= λt · β(n−1)

t − 1

2
Vt

[
rx

(n)
t+1

]
, (13)

The unexpected excess return can be decomposed in a component that is correlated

with vt+1, and whose correlation vector coincides with β
(n−1)
t , and another component

which is conditionally orthogonal to vt, and which can be interpreted as the return

pricing error:

rx
(n−1)
t+1 − Et

(
rx

(n−1)
t+1

)
= β

(n−1)
t · vt+1 + e

(n−1)
t+1 , (14)

Under the assumption that the return pricing error are i.i.d. with variance σ2 and
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that βt is constant, the generating process for log excess returns becomes:

rx
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T

Σβ(n−1) + σ2
)

+ vT

t+1β
(n−1) + ε

(n−1)
t+1 ,

(15)

and so it’s clear now that the (log) excess returns can be decomposed into the ex-

pected return (first term), a convexity correction (second term), and a return inno-

vation. This expression also allows us to see that the time-varying component of

expected excess returns is stationary and driven by the dynamics of the stationary

state variables. We can thus stack (15) across N maturities and T time-periods we

have the following matrix-form representation:

rx =
(
λ01

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T×1 +VTB+ E (16)

where 1l×m is a matrix of ones for each l,m ∈ N, and

1. rx ∈ RT×N .

2. λ0 ∈ RK , λ1 ∈ RK×K ,

3. X− = [X1 | X2 | · · · | XT−1]
T ∈ RT×K ,

4. B ∈ RK×N ,

5. B∗ = [vec (B1B
T
1 ) | · · · | vec (BnB

T
n)]

T ∈ RK×N2
,

6. V ∈ RT×K and E ∈ RT×N .

2.2 Parameters’ Estimation

Estimation of the parameters in our model is implemented by extending the 3-step

procedure proposed by Adrian et al. (2013) to a 4-step procedure. All details are
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found in the Appendix A.2.

1. Construct the cyclical components of yields at all maturities by estimating a

(cointegrating) regression of the one-period rate as a function of predictable slow-

moving variables and use the available predictions on the drivers of the trend in one-

year yields to construct the trend for yields at all maturities by taking the appropriate

average of the expected trends in the one-period rate as described in (4).

2. Construct the pricing factors, X, from principal component analysis (PCA) of

the cyclical components of yields derived in the first step, U. Estimate the equation

(5) using OLS, decomposing the pricing factors into predictable components and

factor innovations V̂ .

3. Regress excess returns on a constant, lagged pricing factors and contempora-

neous pricing factor innovations according to

rx = a1T×K1K×N + V̂b+X−c+ E (17)

4. We show in the Appendix A.2 that

a =
(
λ01

T

T×1

)T
B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T (18)

c = λT

1B (19)

From these, market price of risk’s estimates are given by

λ̂0 =
(
B̂B̂

T
)−1

B̂

[
âT +

1

2
1T×1

(
B∗vec (Σ) + σ21N×1

)T

]
, (20)

λ̂1 =
(
B̂B̂

T
)−1

B̂ĉT. (21)
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2.3 Modelling Trending Yields

Bond prices at any maturity can be obtained by recursive forward substitution of

prices in (??), keeping in mind that the (log) price of all bonds at maturity is zero, i.e.,

p
(0)
t+n = 0. The cyclical component of the one-period bond r1t , i.e., u

(1)
t := r

(1)
t − r

∗,(1)
t ,

can be expressed as a linear function of the underlying factors, i.e.,

r
(1)
t = r

∗,(1)
t + δ0 + δ1 ·Xt + e

(1)
t , (22)

p
(1)
t = −r

(1)
t , p1,∗t = r

∗,(1)
t ,

Where parameters δ̂0 and δ̂1 can be estimated by projecting the cycle u
(1)
t on the

stationary factors Xt.

Our specification of the no-arbitrage model implies that bond prices depend lin-

early on a trend component and on a stationary component4:

pnt = pn,∗t + An +B′
nXt + un

t , (23)

where pn,∗t captures the trend component of bond prices. The model also implies

cross-equation restrictions on the parameters An, Bn and on the trend pn,∗t .

An = An−1 + (µ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)
− δ0 (24)

Bn = (Φ− λ1)
T Bn−1 − δ1 (25)

p
(n),∗
t = p

(n−1),∗
t+1 − r∗t (26)

4See Appendix A.3 for more details
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In this specification, trends affect yields but excess returns are driven exclusively

by stationary variables. The main innovation in our proposal is that the vector Xt is

extracted from the de-trended term structure and therefore the drivers of the excess-

returns are the factors extracted from the cyclical components of the yield curve. Note

that our specification imposes on the dynamics of de-trended bond prices exactly the

same restrictions that a standard model imposes on the dynamics of bond prices.

Hence, the comparison of the output of our model with that of a comparable ATSM

model is immediate. In the case of a standard ATSM, the same VAR structure that

we use for factors extracted from the cyclical components of yields is adopted directly

for factors extracted from yields, without de-trending them. In this specification,

r
(1)
t = δ0 + δ1 ·XACM

t + ϵt, (27)

p
(n)
t = Cn +DT

nX
ACM
t + u

(n)
t , (28)

where the recursive restrictions apply to Cn, and Dn. Basically, everything is the

same but the trendy terms are drifting prices and yields. Hence, in this specification

yields (trendy) and excess returns (stationary) are driven by the same set of state

variables, XACM
t (Adrian et al., 2013).
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2.4 Model Simulation, Forecasting and Term Premia

After the estimation is completed, we have the following model:

r
(1)
t = r

∗,(1)
t + u

(1)
t (29)

r
∗,(1)
t = −γ1MYt − γ2∆ypott − γ3π

LR
t (30)

r
(n)
t = r

∗,(n)
t + u

(n)
t (31)

r
∗,(n)
t =

n−1∑
i=0

r
∗,(1)
t+i (32)

p
(n)
t = p

∗,(n)
t + An +BT

nXt + ε
(n)
t , (33)

Xt = µ+ ΦXt−1 + vt+1 (34)

in which the factors Xt are extracted from the cyclical components of yields, un
t , after

the completion of the first stage of estimation. The model fit can be readily assessed,

by comparing actual data with fitted data from the model, model forecast are also

naturally constructed using the factor structure. Finally, model simulation in two

scenarios, a baseline with all parameters set are their fitted values and an alternative

one in which the market price of risk is set to zero, i.e. λ0 = λ1 = 0, allows to

compute term premia as the differences between the model implied yields and the

risk neutral yields.

The performance of our model in terms of fit, forecast and the properties of the

derived term premia can be compared with that of a standard ATSM model:

p
(n)
t = Cn +DT

nX
ACM
t + ε

(n)
t , (35)

XACM
t = µ+ ΦXACM

t−1 + vt+1, (36)
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in which estimation is implemented in three steps and the factors XACM
t are extracted

directly from the yield curve (i.e., not detrended).

3 Empirical Results

Estimation and simulation5 is performed by using the zero coupon yields provided by

the FED6 (Gürkaynak et al., 2007), data on MYt, the ratio of middle-aged (40-49)

to young (20-29) obtained from the Bureau of Census, the survey-based measure of

long-run inflation expectations, used in the Fed’s FRB/US model7 and the measure

of potential Gross Domestic Product available from the FRED database.8 Quarterly

data over the period 1980:1-2023:2 are considered. In this section, we shall report

evidence based on the comparison between the simulation of our model estimated in

four steps and a standard ATS model estimated in three steps.

3.1 Detrending Yields

The trend in the one-period (three-month) rate is captured by projecting it on the

proxy for the age structure of the population, potential output growth and the survey-

based measure of long-run inflation expectations. The results, reported in Table 1,

show that the estimated model produces stationary residuals with estimated coef-

ficients on the drivers of the drift on short-term rates in line with previous studies

Favero and Fernandez-Fuertes (2023), Bauer and Rudebusch (2020), with a negative

5a full replication package in R is available from the authors’ website
6https://www.federalreserve.gov/econres/feds/the-us-treasury-yield-curve-1961-to-the-present.

htm.
7https://www.federalreserve.gov/econres/us-models-package.htm.
8https://fred.stlouisfed.org/series/GDPPOT.
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coefficients on MY capturing the effects of the age structure of the population on the

supply of savings, and positive and slightly larger than one coefficients on potential

output growth and long-run inflation expectations.

Table 1. Modelling the Trend in three-month yields

Dependent variable:

r
(1)
t

MYt −0.037∗∗∗

(0.004)

∆ypott 1.418∗∗∗

(0.192)

πLR
t 1.315∗∗∗

(0.090)

Observations 174
Adjusted R2 0.907
ADF test on residuals -4.66∗∗∗

Residual Std. Error 0.017 (df = 171)
F Statistic 567.984∗∗∗ (df = 3; 171)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Given the trend component on one-period rates we derive the trend components

for yields at any maturity as specified in Section 2. Figure 3 illustrates our results

for the 3-month and the 10-year yields. Note that the cyclical components of yields

contain information on the term-premia, therefore we expect them to fluctuate around

a level that differs across different maturities.
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Figure 3. Trend Components

(a) Three month yield time series against its trend.

(b) Ten year yield time series against its trend.
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3.2 Consequences of TS Trend Presence in VAR factors

Table 2. Eigenvalues associated to the Principal Compo-
nents’ eigenvectors from the baseline model (Panel A) and
our model (Panel B).

Panel A: PCs on yields (Adrian et al., 2013)

PC1 PC2 PC3 PC4 PC5

0.9721 0.8949 0.6604 0.44 0.3306

Panel B: PCs on yields’ cyclical component

PC1 PC2 PC3 PC4 PC5

0.8899 0.8899 0.7049 0.5046 0.2898

The second step in our approach is the extraction of principal components from

detrended yields. We do so by following the path defined by Adrian et al. (2013),

i.e,. we consider the first five principal components of a term structure of sixty

cyclical components of yields with maturities from three-month (one quarter) to 15-

year (sixty quarters). That means that, in align with the notation we have already

defined, N = 60. Figure 4 illustrates the time series of these factors and compares

them with those of the equivalent factors extracted from the term structure of yields

wiath maturities from three-month to 15-year. The graphical evidence clearly hints

at the presence of a drift in at least one of the factors estimated in the standard

approach, while our proposed detrended framework seems successful in removing it.
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Figure 4. Principal Components

(a) ACM

(b) FF
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Indeed, if we look at the five corresponding eigenvalues, i.e., the roots of the

characteristic polynomial for the two alternative VAR specification, we see that there

exists a near unit-root in the VAR associated to the ACM model in which there’s no

correction for potential trends. As we see in Table 2, the highest eigenvalue, i.e., the

one associated with the first principal component, and the one accounting by most of

the variation, equals 0.9721 ≈ 1. However, this unit root is completely eliminated in

our model, in which the highest eigenvalue is just 0.88. Also, notice that we do not

have anymore just one principal component explaining much of the variance (which

in the case of the standard model was the first one, i.e., the one associated with the

unit root), but two of them, both with the same eigenvalue at least in the first four

decimals9. Hence, it seems that correcting for the presence of trends in the term

structure puts us in the good path when modelling the underlying driving factors as

a vector autoregression.

3.3 Excess Returns regressions

We report in Table 3 the results of regressing excess returns on a constant, lagged

pricing factors, Xt, and contemporaneous pricing factor innovations, vt+1, for the

standard factor specification and our factor specification in the spirit of equation

(15). In particular, we consider the R2 from the “predictive” specification in which

contemporaneous pricing factor innovations are not included and the full specification

and compare them with the version in which contemporaneous pricing factor inno-

vations are included in both models, ACM and FF. It’s worth highlighting that the

9Multiplicity higher than one may make the geometrical interpretation more challenging, since
any rotation among these components would be equivalent, but this fact does not pose any threat
on the final conclusions of our model.
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predictive version of the model, which incorporates factors extracted from the cycli-

cal components of yields, outperforms the standard model. Indeed R2 is below 0.20

across all maturities and around 0.1 in almost all maturities in the standard ACM

model, whilst it’s higher than 0.10 in all maturities in our model. However, when we

consider the full specification, the standard model achieves a nearly perfect fit, with

R2 near one in every maturity, surpassing the alternative FF model’s performance..

Table 3. This table reports the R2 of regresing excess re-
turns on, either only the lagged pricing factors, Xt, or on
lagged pricing factors together with contemporaneous pric-
ing innovations, vt+1.

Panel A: Standard ACM model

n 4 8 12 16 20 28 40 60

Xt 0.17 0.13 0.1 0.09 0.09 0.09 0.1 0.11

Xt and vt+1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Panel B: FF

n 4 8 12 16 20 28 40 60

Xt 0.15 0.14 0.13 0.13 0.13 0.13 0.14 0.13

Xt and vt+1 0.98 0.96 0.95 0.94 0.93 0.92 0.91 0.9

3.4 Fit and Forecast Performance

To illustrate fit and forecasting performance of the two alternative specifications, we

report in Figure 5 the results of a within-sample model simulation up to 2005:Q4,

where current values of the factors are used to predict yields, and of out-sample model

simulation from 2006:Q1 onward, where n-step ahead forecasts of the factors (with n

going from 1-quarter to 70-quarters) are used to predict yields.
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Figure 5. This graph reports the fitted (1980Q1:2005Q4)
and the forecasted (2006Q1:2023Q2) time series of 1Y and
10Y yields given by the standard ACM model (green) and
our model (red) against the actual values (blue). The shaded
area indicates our selected out-of-sample period.

(a) 3-month yield.

(b) Ten year yield.
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Results for 3-month and 10-year yields are reported. The within-sample perfor-

mance of our models is slightly inferior to that of the standard model. The reason

may be that the trend component of yields is captured with less precision, because

the sample is shorter and, e.g., the demographic variable, MYt, that aims capturing

the trend has very low variability in shorter horizons. However, our detrended model

clearly dominates out-of-sample, showing the capability of tracking well the long-term

dynamics of yields. Indeed the standard model behaves very poorly out-of-sample,

as it is evident by simply looking at the picture: the forecasted path is basically a

straight line whose level is much higher than the average of the realised one. The

presence of a unit root together with the very low R2 in the regressions without inno-

vations, vt+1, compared to the near one R2 when including them may explain these

phenomena (Panel A, first row of Table 3).

3.5 Term Premia

Finally, we analyse term premia in Figure 6. We consider the one-year and the 10-

year horizon. The term premiums indicated by the two models appear to be quite

distinct: the 10-year term premium suggested by the conventional model exhibits a

noticeable trend, in contrast to the model that uses the trend-cycle decomposition of

yields, where this trend is less apparent. At shorter durations, like 1 year, the term

premia are relatively similar. Therefore, it is essential to analyse yields in terms of

trend and cycle to accurately identify term premia over longer periods.
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Figure 6. This figure reports the 1Y (red) and 10Y (orange)
term premia in the two models.

(a) ACM.

(b) FF.
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4 Conclusions

Yields to maturity are (co-)drifting and holding period excess returns are (co-)cycling.

Standard Affine Term Structure model do not separate trends and cycles in the data,

but use factors extracted from yields to maturity to explain holding period excess re-

turns as well as yields to maturity. As a consequence, the empirical model has a rather

disappointing performance in predicting short-term rates and generates trending risk

premia. This trend is steeper at longer horizons. As risk premia are not observable,

term structure models should be evaluated by their performance in predicting the fu-

ture path of short-term rates. In fact, risk premia are very strongly dependent on this

path. We propose a novel way to improve on the standard approach by applying the

no-arbitrage restrictions to a model in which the factor structure adopted to explain

holding period excess returns is extracted from de-trended yields. The trend in yields

is a common trend driven by the drift in short-term rates. The drift in short-term

rates in turn is not predicted by a VAR but it is related to long-term forecast for

slow-moving variables such as the demographic structure of the population, potential

output growth and long-term inflation forecast. A VAR structure is then adopted

to model the dynamics of the stationary cyclical components. Our proposed model

outperforms the standard approach in forecasting short-term rates and produces sta-

tionary risk premia, very different from those produced by the standard approach.
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A Appendix

A.1 Derivations

We assume as in Adrian et al. (2013) that the systematic risk is represented by a

stochastic vector, (Xt)t≥0, following a stationary vector autoregression

Xt = µ+ ΦXt−1 + vt (A.1)

with initial condition X0 and whose residual terms, (vt)t≥0 follow a Gaussian distri-

bution with variance-covariance matrix, Σ, i.e,.

vt
∣∣ (Xs)0≤s≤t ∼ N (0,Σ) . (A.2)

Let’s denote the zero coupon treasury bond price with maturity n at time t by P
(n
t .

No Arbitrage Dybvig and Ross (1989) holds

P
(n)
t = Et

[
Mt+1P

n−1
t+1

]
. (A.3)

Assumption 1. The pricing kernel, mt+1 := logMt+1, is exponentially affine

mt+1 = −rt −
1

2
||λt||2 − λT

t Σ
− 1

2vt+1, (A.4)

where rt := −p
(1)
t is the continuously compounded risk-free rate, and λt ∈ RK .

Assumption 2. Market prices of risk are affine

λt = Σ− 1
2 (λ0 + λ1Xt) , (A.5)
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where λ0 ∈ RK and λ1 ∈ RK×K .

Assumption 3.
(
rx

(n−1)
t , vt

)
t≥0

are jointly normally distributed.

The excess holding return of a bond maturing in n is given by

rx
(n−1)
t+1 := pn−1

t+1 − p
(n)
t − rt (A.6)

Now, (A.3) can be rewritten as

1 = Et

[
exp

{
mt+1 + p

(n−1)
t+1 − p

(1)
t

}]
= Et

[
exp

{
−rt −

1

2
||λt||2 − λT

t Σ
− 1

2vt+1 + rx
(n)
t+1 + rt

}]
= Et

[
exp

{
rx

(n)
t+1 −

1

2
||λt||2 − λT

t Σ
− 1

2vt+1

}]
= exp

{
Et [ξt+1] +

1

2
V [ξt+1]

}
,

(A.7)

where ξt+1 := rx
(n)
t+1 − 1

2
||λt||2 − λT

t Σ
− 1

2vt+1, and

Et

[
rx

(n−1)
t+1

]
= Et

[
rx

(n−1)
t+1

]
− 1

2
||λt||2 (A.8)

Vt

[
rx

(n−1)
t+1

]
= Vt

[
rx

(n−1)
t+1 − λT

t Σ
− 1

2vt+1

]
= Vt

[
rx

(n−1)
t+1

]
+ Vt

[
λT

t Σ
− 1

2vt+1

]
− 2cov

(
rx

(n−1)
t+1 , λT

t Σ
− 1

2vt+1

)
= Vt

[
rx

(n−1)
t+1

]
+ λT

t Σ
− 1

2Vt [vt+1] Σ
− 1

2λt − 2λT

t Σ
− 1

2 covt

(
rx

(n−1)
t+1 , vt+1

)
= Vt

[
rx

(n−1)
t+1

]
+ ||λt||2 − 2λT

t β
(n−1)
t . (A.9)

where

β
(n−1)
t := Σ−1covt

(
rx

(n−1)
t+1 , vt+1

)
∈ RK . (A.10)

29



Therefore, (A.3) is equivalent to

0 = Et

[
rx

(n−1
t+1

]
+

1

2
Vt

[
rx

(n)
t+1

]
− λT

t β
(n−1)
t , (A.11)

which gives us a nice expression for the expected returns:

Et

[
rx

(n−1)
t+1

]
= λT

t β
(n−1)
t − 1

2
Vt

[
rx

(n)
t+1

]
. (A.12)

Assumption 5. β
(n)
t = β(n) for every t ≥ 0.

We can decompose the unexpected excess return, rx
(n−1)
t+1 − Et

[
rx

(n−1)
t+1

]
into a com-

ponent that is correlated with vt+1 and another component which is conditionally

orthogonal, ε
(n−1)
t+1 (return pricing error):

rx
(n−1)
t+1 − Et

[
rx

(n−1)
t+1

]
= vT

t+1γ
(n−1) + ε

(n−1)
t+1 . (A.13)

Notice that

β
(n−1)
t = Σ−1

(
E
[
rx

(n−1)
t+1 vt+1

]
− E

[
rx

(n−1)
t+1

]
Et [vt+1]

)
= Σ−1E

[
rx

(n−1)
t+1 vt+1

]

and

γ(n−1) =
(
E
[
vT

t+1vt+1

])−1 E
[
vt+1rx

(n−1)
t+1

]
= Σ−1E

[
rx

(n−1)
t+1 vt+1

]
,
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because E
[
vT
t+1vt+1

]
= Σ. So actually γ(n) = β(n) for every n ≥ 0. Hence,

V
[
rx

(n−1)
t+1

]
= Et

[(
rx

(n−1)
t+1 − Et

[
rx

(n−1)
t+1

])2
]

= Et

[(
vT

t+1β
(n−1) + εn−1

t+1

)2]
= Et

[(
vT

t+1β
(n−1)

)2
+ 2vT

t+1β
(n−1)ε

(n−1)
t+1 +

(
ε
(n−1)
t+1

)2
]

=
(
β(n−1)

)T Et

[
vt+1v

T

t+1

]
β(n−1) + σ2

=
(
β(n−1)

)T

Σβ(n−1) + σ2.

What we get is

rx
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T

Σβ(n−1) + σ2
)

+ vT

t+1β
(n−1) + ε

(n−1)
t+1 .

(A.14)

A.2 Estimation

We can then rewrite (A.14) as

rx
(n−1)
t+1 = (λ0 + λ1Xt)Bn−1 −

1

2

(
BT

n−1ΣBn−1 + σ2
)
+ vT

t+1Bn + e
(n−1)
t+1 (A.15)

and therefore have a vectorial form:

rx =
(
λ01

T

T×1 + λ1X
T

−
)T

B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T +VTB+ E (A.16)

where

1. rx ∈ RT×N .

2. λ0 ∈ RK , λ1 ∈ RK×K ,
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3. X− = [X1 | X2 | · · · | XT−1]
T ∈ RT×K ,

4. B ∈ RK×N ,

5. B∗ = [vec (B1B
T
1 ) | · · · | vec (BnB

T
n)]

T ∈ RK×N2
,

6. V ∈ RT×K and E ∈ RT×N .

So we take (A.16) as our reference point in the estimation process that we do in three

steps following Adrian et al. (2013) procedure:

1. Construct the pricing factors, (Xt)
T
t=1 and estimate the VAR coefficients µ ∈ RK

and Φ ∈ RK in (A.1) using OLS. Then take (v̂t)
T
t=1 from v̂t := Xt − X̂t ∈ RK , where

X̂t = µ + ΦXt−1 for every t = 1, . . . , T . Stack the time series (vt)
T
t=1 into the matrix

V̂ ∈ RT×K . The vatiance-covariance matrix is thus

Σ̂ =
V̂

T

V̂

T
(A.17)

2. Perform the regression according to (A.16), i.e.,

rx = a1T×K1K×N + V̂b+X−c+ E (A.18)

where a ∈ R, b, c ∈ RK×N . Collect everything into single matrices

Z =
[
1T×1 | V̂ | X−

]
∈ RT×(2K+1) (A.19)

d = [a1K×1 | b | c]T ∈ R(2K+1)×N (A.20)

so we can write rx = Zd+ E and therefore

d̂ = (ZTZ)−1 ZTrx. (A.21)
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Then, collect the residuals from this regression into the matrix

Ê = rx− Zd̂ ∈ RT×N . (A.22)

and estimate

σ̂2 =
tr
(
Ê

T

Ê
)

NT
. (A.23)

Finally, we construct B̂
∗
from b̂.

3. Estimate the price of risk parameters, λ0 and λ1 via cross-sectional regression.

Recall from (A.16) that

a =
(
λ01

T

T×1

)T
B− 1

2

(
B∗vec (Σ) + σ21K×1

)
1T

T (A.24)

c = λT

1B (A.25)

If we transpose them, we can estimate λ0 and λ1 via OLS, i.e.,

λ̂0 =
(
B̂B̂

T
)−1

B̂

[
âT +

1

2
1T×1

(
B∗vec (Σ) + σ21N×1

)T

]
(A.26)

λ̂1 =
(
B̂B̂

T
)−1

B̂ĉT (A.27)

A.3 Recursion

Consider the generating process for log excess returns in our model:

rx
(n−1)
t+1 = (λ0 + λ1Xt)

Tβ(n−1) − 1

2

((
β(n−1)

)T

Σβ(n−1) + σ2
)
+ vT

t+1β
(n−1) + ε

(n−1)
t+1 .

(A.28)
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We need now to find two sequences of coefficients, (An)
N
n=1 and (Bn)

N
n=1, that allow

us to express bond prices as exponentially affine in the vector of state variables, Xt,

plus a trend term, p
∗,(n)
t , i.e.,

p
(n)
t = p

(n),∗
t + An +XT

t Bn + u
(n)
t , (A.29)

where p
(n)
t := logP

(n)
t . Notice that

p
(1)
t = −rt = −r∗t −XT

t e1, (A.30)

motivating that A1 = 0, B1 = −e1, and p1,∗t = −r∗t . For any n > 1,

rx
(n−1)
t+1 = p

(n−1),∗
t+1 + An−1 +XT

t+1Bn−1 + u
(n−1)
t+1

− p
(n),∗
t − An −XT

t Bn − u
(n)
t

+ p
(1),∗
t + A1 +XT

t B1 + u
(1)
t

= p
(n−1),∗
t+1 + An−1 + (µ+ ΦXt + vt+1)

TBn−1 + u
(n−1)
t+1

− p
(n),∗
t − An −XT

t Bn − u
(n)
t

+ p
(1),∗
t + A1 +XT

t B1 + u
(1)
t

= rx
(n−1),∗
t+1 + (An−1 − An + A1 + µTBn−1)

+XT

t (ΦBn−1 −Bn +B1) +
(
un−1
t+1 − u

(n)
t + u

(1)
t

)
+ vT

t+1Bn−1
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Hence, the following must hold

rx
(n−1),∗
t+1 + (An−1 − An + A1 + µTBn−1)

+XT

t (ΦBn−1 −Bn +B1) +
(
un−1
t+1 − u

(n)
t + u

(1)
t

)
=(λ0 + λ1X

T

t β
(n−1) − 1

2

((
β(n−1)

)T

Σβ(n−1) + σ2
)
+ vt+1β

(n−1) + ε
(n−1)
t+1

i.e.,

An−1 − An + A1 + µTBn−1 = λT

0β
(n−1) − 1

2

((
β(n−1)

)T

Σβ(n−1) + σ2
)

ΦTBn−1 −Bn +B1 = λT

1β
(n−1)

un−1
t+1 − u

(n)
t + u

(1)
t + vT

t+1Bn−1 = ε
(n−1)
t+1

rx
(n−1),∗
t+1 = 0

vT

t+1β
(n−1) = vT

t+1Bn−1

and therefore

An = An−1 + µTBn−1 − λT

0β
(n−1) +

1

2

((
β(n−1)

)T

Σβ(n−1) + σ2
)

Bn = ΦTBn−1 +B1 − λT

1β
(n−1)

p
(n),∗
t = p

(n−1),∗
t+1 − r∗t

β(n) = Bn
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The last equation simplifies everything even more:

An = An−1 + (µ− λ0)
T Bn−1 +

1

2

(
BT

n−1ΣBn−1 + σ2
)

(A.31)

Bn = (Φ− λ1)
T Bn−1 − e1 (A.32)

p
(n),∗
t = p

(n−1),∗
t+1 − r∗t (A.33)
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